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SPICE-Compatible Models for Multiconductor
Transmission Lines in Laplace-Transform
Domain

Antonije R. DjordjevEc

Abstract—Two models for multiconductor transmission lines model described in [3] is an improvement of the previous
are presented that are compatible with SPICE. One model is model. It works well for arbitrary lines and it has been
based on a Tlevenin equivalent circuit and the other model yoqjanad to be compatible with virtually any technique for the
is based on mode decoupling. The models contain controlled L . . .
generators in the Laplace-transform domain and are able to €lectromagnetic-field analysis of multiconductor transmission
handle lossy lines with frequency-dependent parameters. lines. However, this model is restricted to lossless lines. A
model that includes frequency-dependent losses and dispersion
is described in [4]. In this model, the dispersive modal prop-
agation is emulated by ladder networks of lumped elements,
|. INTRODUCTION which may result in huge circuits if long transmission lines

o . . ._are analyzed.
OST DIGITAL circuits and some microwave cwcuﬂsa e analyzed - .

. . o . None of these models can efficiently model multiconductor
contain multiconductor transmission lines (e.g., con}

puter buses, some directive couplers, and filters). In spite_{ﬁnsmISSlon lines with frequency-dependent losses. This paper

this, most popular computer-aided design (CAD) prograrﬁ% aimed at presenting two novel SPIQE-compatlbIe models
still do not include arbitrary multiconductor lines as standat%i'at can perfqrm such a task. The f|rsf[ model,_ de_scrlbed
elements. In particular, many digital-circuit designers aHH,_SeCt'On Il is based on a “Ehemn equivalent circuit. It
microwave engineers use various versions of the progréﬁﬁ“_zes controlled generators in the Laplgce—transform do-
known under the generic name SPICE. In recent releadB@in (o model the modal delay, attenuation due to losses,
[1], this program has a built-in model only for a simplé‘”d dispersion. Particular care is taken to provide causal
transmission line. In subcircuit libraries, it has an obsolef&Sponses in the time domain, as explained in Section Iil.
lumped-element model for a simple line and models fohe second model, described in Section IV, is a hybrid
2-5 coupled lines. The latter models are rather incompleR€tween the model of Section Il and the model of [3].
They assume the lines to have identical parameters, whichigally, several examples of the analysis using the proposed
questionable in both theory and practice. The models take imdels are presented in Section V, together with experimental
account the coupling only between adjacent lines, which dgta.
of a limited use. In all cases, the lines can be either lossles8oth models presented in this paper are subcircuit proto-
or lossy. However, the primary parameters are independentyjes that can easily be included into SPICE or other similar
frequency. This is insufficient for many applications, as therograms [5].
losses are most often frequency-dependent. Assume the multiconductor transmission lines to have a
There exists much literature which deals with the analyetal of (V + 1) signal conductors. The firs¥' conductors are
sis of the frequency-domain and time-domain responses referred to as the signal conductors. The last conductor is the
multiconductor lines. However, very few of them [2]-{4]reference conductor (although in practice it can be “floating”).
describe theoretically well-founded SPICE-compatible modef$e line can guide TEM, quasi-TEM, or hybrid waves, but
for multiconductor transmission lines. A model for lossless is assumed that the state on the line can be adequately
lines (with frequency-independent primary matrix parametergascriped by voltages and currents. Details on the analysis

is presented in [2]. The model is a subcircuit prototype thgf the transmission-line response are avoided, as they can be
involves controlled generators and simple transmission liNgs,,ng in [6]-[8].

Although this model works fine in many cases, there are
some computational problems, as explained in Section IV. The II. THEVENIN EQUIVALENT-CIRCUIT MODEL

Index Terms—Multiconductor transmission lines.

Let thez-axis be oriented along the length of the line, with
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Laplace-transform domain are the telegraphers’ equations 1,(0) 2V, (0) 2, (D)  1,.(D)
— +N Fas —
d[V ()] v.OF ~ ~H V0
= _ — 1
I [RI[I(2)] - s[L|[I(x)], 0<z<D @) u@| 200 W) | 40|
dI(x)] * RO Sr—— &
Tdr —-[G][V(2)] = s[C][V(z)], 0<xz<D (2 % v,(0) [z.1 [z, V(D) x
lrsivvnrs T S
where [V (z)] is a vector of complex voltages between the | 2 |/x(9)|| 2%an(0) 2o (D) || 140)| 3
signal conductors and the reference conductor at position ;”\(g) %03
along the line,[I(z)] is the corresponding vector of complex 4 ke 1

currents of the signal conductoi®], [L], [C], and[G] are o _ o _ o
the primary matrix parameters of the line, anis the complex |||:r|1% 1. The TkVvenin equivalent circuit for a multiconductor transmission
frequency § = jw on the imaginary axis, where = 27 f is '

the angular frequency, anfl is the frequency). The general

solution of the telegraphers’ equations can be obtained #pm end #2 and propagated all the way to end #1. A similar
expanding the line state in terms of modes whose propagatigrivation can be carried out starting from (10) and (11) to
along the line is expressed by a multiplicative factor of thyield a relation between the voltage and current vectors for

form exp(F;x) wherey; = «;+;4; is the modal propagation end #2, which defines the &lenin equivalent circuit looking

coefficient ¢ = 1, -- -, N). The line voltages and currents carnto this end (Fig. 1).
be expressed in terms of the modes as Considering this circuit, one is able design the first SPICE-
compatible model, shown in Fig. 2. For simplicity, the model
[V(@)] = [Vine(2)] + [Vier (2)] is shown for N = 3. Each passive network (with the
= [SyH[Ginc(®)] + [Gret(2)]} (3) impedance matrifZ.]) can be synthesized as a complete
[L(2)] = [Gne(2)] + [Let(2)] N-polygon with parallgl branches to ground. The adm_ittances
= 1S H[Gine(2)] = [Gret(2)]} @) of the branches of this network can be expressed in terms
! me et of the elements of the characteristic admittance matrix
where the indices “inc” and “ref’ correspond to the waveEY.] = [Z.]~!. For a lossless and dispersionless line, this

traveling in the direction of thec-axis and in the opposite hetwork is purely resistive. For a lossy and dispersive line, the
direction, respectively[Gi,.(z)] and [G,.;(x)] are vectors admittances are complex and frequency-dependent. However,
of modal intensities[Sy-] is the modal voltage matrix, andin many practical cases, the influence of the line losses on
[S;] the modal current matrix. The modal matrices and tHBe characteristic admittance matrix and the modal patterns
characteristic impedance matrix are related by is relatively small. To simplify the analysis, the elements of
the characteristic admittance matrix, as well as of the modal
[Z:] = [Sv][S:] ™" = [SVILI ' [SvITH([R] + s[L])  (5) voltage and current matrices, may be taken to be real and
where [['|= diag(y; - - - vyw). The modal intensities at the tWOfrequency-lndepepdent. , . o
line ends are related by The ele_ctromonve forces of the &hénin equivalent circuit
for each line end are emulated By-controlled voltage gen-

[Ginc(D)] = [E][Ginc(0)] (6) erators, located at the very left and right ends of the scheme
[Gre(0)] = [E][Gret(D)] (7) of Fig. 2. Each generator is controlled By modal intensities.
According to (12), each multiplicative factor equals twice the
where[E = diaglexp(—v; D) - - - exp(—ynD)]. Now, corresponding element of the modal voltage matrix.

. The intensities of propagated modes are represented in the
VO] =[Sy H[Ginc(O)] + [E[Gres (D)1} ®  Gircuit by electromotive forces of controlled voltage generators
[1(0)] = [S1{[Ginc(0)] — [E][Gret(D)]} (9 in the Laplace-transform domain, located in the middle of the
[V(D)] = [Sv{[E][Ginc(0)] + [Gret(D)]} (10) circuit of Fig. 2. (To conform to SPICE circuit restrictions,
[L(D)] = [SH{[E][Ginc(0)] = [Gret(D)]}- (11) these generators must not be left open. They can be terminated
by arbitrary resistors, not shown in Fig. 2.) The propagation of
Equation (9) can be multipliefZ.] by and subtracted from a mode is taken into account by the multiplicative exponential
(8). Taking (5) into account, one obtains factor of the formexp (—yD) in the control function for a
. generator, thus emulating (6) and (7). This factor multiplies the
[V(O)] = [Z:][I0)] = 2[Sv][E][Gres (D)] intensity of the mode launched from the other transmission-
= 2[Sv][Gres(0)] = 2[Veet(0)]  (12)  jine end. The intensity of the launched mode is evaluated from

which defines the Téwvenin equivalent circuit looking into the voltaggs at the corresponding line end and the_intensities
end #1 of the line (Fig. 1). The passive portion of thigf modes incident on that end. For end #1, according to (8),
circuit has the same impedance matrix as the characteri$it® has

impedance matrix of the multiconductor transmission line. The

electromotive forces are related to the intensities of the modes

traveling in the direction of the negative-axis. The vector [Ginc(0)] = [Sv] T [V(0)] - [E][Grer(D)]

[E][G.et(D)] represents the intensities of modes launched = [Sy]7H[V(0)] = [Gret(0)] (13)
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Fig. 2. A SPICE-compatable model based on thevEmin equivalent circuit folv = 3.

and a similar relation can be written for end #2. In the modetodal analyses can be performed (for example, at a reference
of Fig. 2, Sy,,; denotes the elements of the mati$¢] L. frequency, f,.¢). First, take[G] = 0 and evaluatex.; for all

For the frequency-domain analysis, the Laplace transformodes. Second, tak®&] = 0 and evaluatey,;. However, the
is easily incorporated into the analysis. For the time-domaattenuation coefficients.; and «g4; usually strongly depend
analysis, however, SPICE must first evaluate the inversa frequency. The actual variations of the matri¢R§ and
Laplace transform (i.e., the pulse response) for each exponf®#} are complicated and depend on the properties of the
tial factor and then convolve it with the controlling voltagesonductor and dielectric materials involved in constructing

at each time step. the line. For example, for normal conductors in the skin-
effect region[R] and «.; are approximately proportional
IIl. CAUSALITY OF THE RESPONSE to the square root of frequency, and for superconductors,

. : . . . to frequency squared. For poor dielectrics where the con-
In the evaluation of the time-domain response (in particular . . o
: - uctive losses dominate, the mati&] is independent of
for long lines) the frequency variations and the complex chat- . ) .
. . equency andwy; is also constant. For good dielectrics at
acter of the modal propagation coefficients must be properly. . o :
. . . -~ icrowave frequencies, the electron polarization dominates
taken into account. This can be achieved by fitting the results ) )
: . : S and[G] and «y; are approximately proportional to frequency
of an electromagnetic analysis of the line, which includes the . : .
X . : . uared (corresponding to a loss tangent that linearly increases
line losses and dispersion. Thereby, special care should

taken to obtain a causal response [9]. Considering the analoy frequency). However, except when batl; anday; are
P : 9 Héfependent of frequency, the resulting time-domain response

with a simple line, the author will present here some S|mp|e. . .
. ; - - will not be causal unless appropriate frequency variations of
equations for the modal propagation coefficients that sati - .
. . e modal phase coefficients or, equivalently, of the modal
the causality requirements.

: L phase velocitiesc(,;), are taken into account.
The real part of each modal propagation coefficien: = . . N . .
. ; Consider a simple transmission line. Its propagation coeffi-
1,---,N) can be approximately separated into two parts as ~ =~ .~ . : :
) ient is given in the Laplace-transform domain by
o = o + g, Whereay; is due to the conductor losses ang
ag; IS due to the dielectric losses. In practical cases, the matrix
[G] has a negligible influence on.; and the matriR] has
a negligible influence onvy;. Hence, for a lossy line, two v(s) = V(R(s) + sL(s))(G(s) + sC(s)) (14)
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where R, L, G, and C are the primary (scalar) parametershe equivalent capacitance per-unit length of this line slightly
of the line, which generally depend an Equation (14) can varies with frequency, and the conductance is proportional to
be rearranged as (15) as shown at the bottom of the followifrgquency squared. The response of such a line is also causal,
page, where fos = jw, a(s) = a., b(s) = ay, c(s) = ¢y, and thus having

A(s) and B(s) denote the corresponding factors in brackets. 1
In the simplest case of a lossless simple line (with B(s) = THCNSIC R r— (20)
frequency-independent parameters) 20a(srer) (F5.20) 7+ 75
A(s) = B(s) = 5 (16) A similar procedure can be done for superconducters @).
€ (Sret) To obtain a causal response, one can combine any pair of

Wheres,es = 257 frer. Such a line can be approximated in thel(s) and B(s) from (16) to (20). _
circuit theory by a ladder network that consists of frequency- IN order to secure a causal response for a multiconductor
independent inductors in series branches and capacitors"@smission line, take (15) (at the bottom of the page) to
parallel branches. Naturally, its response is causal, and (E¥press each modal propagation coefficient in terms of
presents the simplest cases .fs) and B(s) that yield a 4(s) and B(s) that are related to the corresponding modal
causal response. attenuation coefficient$c.; and «y;) and the modal phase

If a lossy simple transmission line has frequencyeelocity (csi) by (16)-(20). Thereby, the modal analysis is
independent parameters (which in practice corresponds P@formed only at the reference frequency, which can be
lower frequencies, where the skin effect is not pronouncedfiosen arbitrarily, and (16)-(20) is selected based on the
then a(s), b(s), and c(s) are independent of frequency, sgSsumed frequency variations of losses.
that A(s) and B(s) are given by

s IV. MobAL DECOMPOSITION MODEL
A(s) = 2ae(Spef) + ——— (7) - . .
Co(Sref) The derivation of the second SPICE-compatible model is
and based on the model described in [3], which can be considered
B(s) = 200q(sret) + 5 (18) asan improvement of the model of [2]. The model of [3] can be
Co(Sret) derived starting from telegraphers’ equations in the frequency

Such a line also has a causal response. Following the approgefain (although a similar procedure can be performed in the
in [4], the line can be approximated by a ladder networime domain). Substituting (3) and (4) into (1) and (2), yields
consisting of frequency-independent inductors and resistorg

(connected in series) in series branches, and capacitors a@{[Ginc(ﬁU)] + [Gret (#)]} == [T ] [Gine(@)] = [Gret (2)]}

resistors (connected in parallel) in parallel branches. (21)
If the skin effect is fully pronounced on a simple line, (4

then R(s) = R(syet)//5zer and sL(s) = sL. + sLi(s) = g UGinc(@)] = [Gret(@)]} = = [T {[Grine ()] + [Grer(2)]}-

sL.+R(s), whereL. is the per-unit-length external inductance (22)

(which is frequency-independent) aig is the per-unit-length _ .
internal inductance (which is inversely proportionakt®). In  Equations (21) and (22) can be interpreted as telegraphers’
this caseq(s) is practically proportional to the square root ofguations for a virtual multiconductor transmission line where

frequency, and the inductance has a small frequency-dependBatelementc (z) of the vectorGin.(z)] is the voltage of
term. Hence, the incident wave on conductat, and the element? s, ()

of [Get(z)] is the voltage of the reflected wave. However,
(19) since the matri[] is diagonal, the signal conductors of this
Sref  Cp(Sret) line are decoupled, and (21) and (22) can be written in scalar

A(s) = 20 (seat)y | 25 4 5

is the third example ofd(s) that gives a causal response. form as
Finally, one can consider a simple lossy line with a did

electric loss tangent that is approximately a linear function@(GinCm(x) + Gretm(2)) = =Ym(Ginem () — Gretm (7)),

frequency. If the line conductors are assumed to be lossless, the m=1,---,N (23)

line can be approximated by a ladder network of frequency-

independent inductors in series branches and capacitors@&gimm(x) = Gretm(2)) = =Ym(Ginem(2) + Gretm (1)),

resistors (connected in series) in parallel branches. Hence, m=1,---,N. (24)

- \/ <2a(s) + i) <2b(s) n i)) = /A(s)B(s) (15)
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Fig. 3. A SPICE-compatible model for lossless lines based on the modal decouplidg for3. (Reprinted from [3].)

A pair of the above equations (for the samg describes a At this point, some advantages of the model of [3] (Fig. 3)
simple transmission line of characteristic impedadgg, =1 over the model of [2] should be stressed, which are transferred
(no units) and propagation coefficient, - Ginem () can also to the model that will be developed later in this section.
be interpreted as the current of the incident wave of tiRrst, the model of Fig. 3 accepts an arbitrary modal voltage
conductorm, and —Gitm(2) @s the current of the reflectedmatrix [Sy-], while for the model of [2] this matrix must
wave. From (3) and (4), the actual voltages and currents at #¢ normalized so to satisfy the conditiofs{]*)~! = [S;],
original multiconductor transmission-line terminals are relateghere the superscript™ denotes transpose. This normaliza-
to the voltages and currents of the virtual (decoupled) line Bn may be inconvenient for several reasons. First, when the
eigenvalue analysis of the line is performed many standard
V(0] =[Sv]{[Ginc(0]+[Gres(0)]} (25)  computer programs for this purpose do not yield the required
{[Ginc(0)] = [Grer(0)]} =[S7] 7 [I(0)] (26) normalization. A similar situation may occur if the modes
V(D) =Bv]{[Gind D)+ [Gie D)} (27) @re evaluated directly from an electromagnetic-field analysis
(e.g., from a full-wave solution of the line). In both cases,
an additional computational effort is required to reduce the
matrix [Sy/] to the required form. Another problem for the

Equations (25) and (27) can be emulated in SPICE by COr?]]_odel of [2] occurs when the modes are degenerate (for a

trolled voltage generators, and (26) qnd (28) by Contr(.)”%ossless multiconductor transmission line in a homogeneous

current generators. For a lossless multiconductor transmlssg?glectric) when the modal analvsis can result in an arbitrar

line, a SPICE-compatible model can be designed [3] as shown . y . ary
\(\{egular) matrix[Sy], and even more computational effort is

in Fig. 3 (for N = 3). Each simple transmission line in . ) X . .
9.3 ( ) P required to properly normalize this matrix. In this case, the

that model is lossless, its characteristic impedance &, 1 del of Fig. 3 bi th
the length isD, while the wave propagation velocity alongmo el of Fig. 3 can accept an arbitrary matj¢ ], even the

the line ¢;) equals the corresponding modal phase veloci 'mp!est case of a unit matrix, and the corresponding matrix
and is assumed to be independent of frequency, which is #5d] 1S evaluated from (5).
only case that can be directly modeled by SPICE. Note that>€cond, the characteristics of modes may not be evalu-

in [3] a different definition of the characteristic impedancedtéd from the primary matrix parameters, but rather from an
is used, which is incompatible with (5). In Fig. &7, electr'omagnetlc—ﬂeld analysis. The.model of F|g. 3 requires
denotes the elements of the matfig;]~*. All controlled Xnowing only the modal propagation coefficients and the
generators in Fig. 3 are ordinary (i.e., not in the Laplacé¥0 modal matrices [§y] and [S;]), which is compatible
transform domain). The control functions for the voltag®ith many techniques for the electromagnetic-field analysis
generators include voltages at the terminals of the simrgémulticonductor lines, including the full-wave analysis. The
transmission lines and their inclusion into the SPICE model f8odel of [2] requires knowing the primary matrix parameters
straightforward. However, the control functions for the currefifom which the modal propagation coefficients, the matrices
generators include currents at the terminals of the subcirciffy] and [S;], and the characteristic impedances of the de-
In order to sample these currents, dummy independent voltaggipled simple transmission lines have to be calculated. In
generators (of zero electromotive force) have to be addeddases when the primary matrix parameters are not evaluated
series with the controlled voltage generators (not shown Iy the field analysis, the model of [2] requires an additional
Fig. 3). The currents of these dummy generators are usedeftort to identify the characteristic impedances of the simple
control the current generators. transmission lines, which makes it harder to be applied.

{[Ginc(D)] = [Gret(D)]} =[S7] 7 [L(D)]- (28)



574 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 5, MAY 1997

3

3 3 3
SnG(0) 2 Sh1(0) YSh® Y. Sm6,(D)
i=1 i=1 i=1 i=1

V.(g)<> PaN 10 26:(®)  2Gu,(0) 10 AN <>y,(o)
1 [0 i ; o 71 I
2

2(6,(D)~Gipg (D)) 0™ (€:(0)~Gous(0))e "2
3 3

3 3

Y SmG(0) 2. Siuli(0) Yo Sil(D) Y SmGi(D)
=1 =1 =1 =1

V.(g)<> A 10 26.a(0)  26,4(0) 10 A <>xa<0)
oL LN &0 a0 N1 1,5
2(G4(D)~Gineg(D))e ™™™ 2(Co(0)~Crus(0)) e~ 7”
3 3 3 3

Y SmG(0) . Sihi(0) VoSiml(D) Y Smi6i(D)
i=1 =1 i=1 =1

2(G(D)~Gings (D)) ™ * (65(0)~Goues(0))e~ 7P

v,(g)<> JaN 10 26d®  26u) 10 AN <>_v,(o)
ol LN &0 ; ; a® N1 LG
2

Fig. 4. A SPICE-compatible model for lossy lines based on the modal decouplingy fer 3.

Finally, it should be pointed out that there exist quite a few 0.5 0
papers, dating from old ones up to recent ones (e.g., [10], pk 0.5 g‘
[11]), where both the voltage- and current-wave equations are 7z ﬂ; Z1
formulated and solved independently for one multiconductor t [5_=‘4,5, tg8=0.03

transmission line. Such an analysis yields matrig$s] and
[S7] that are unrelated to each other, and subsequent comﬁ
tations are required to introduce a normalization so to satisfy
(5). However, one must question the usefulness of solving . .
two eigenvalue problems (except in theoretical investigationd)?iS adaptation leaves two controlled voltage generators in
The algorithm exposed in [6], which includes solving onlyhe Laplace-transform domam and two “ordlngry" controlled

one eigenvalue equation, is all that is needed to obtain ¥fltage generators. Each “ordinary” generator is controlled by
data for the present SPICE-compatible models without atx output of one generator in the Laplace-transform domain.

normalization of the modal matrices. For a comprehensiV&nCe; each pair of controlled generators can be substituted by
treatment of this topic, see also [12]. a single controlled voltage generator in the Laplace-transform

The model of Fig. 3 was designed in [3] for the analysis Sgomain, Iocateq in the middle of the scheme' in Fig. 4. Each
lossless multiconductor transmission lines. In recent versioR&work of resistors that models the passive part of the
of SPICE, there is a built-in model of simple lines WithThevenln circuit in Fig. 2 re_duces to a single resistor of
frequency-independent primary parameter<’, R, andG. In  'esistancel ©, as shown in Fig. 4. _
conjunction with the model of Fig. 3, a lossy simple line can FOr the subcircuits of Figs. 2-4, augmentations may be
model the modal propagation assuming the modal attenuat[¥tfded to satisfy some requirements imposed by SPICE. First,
coefficient to be independent of frequency. However, this i@ ransmission-line port is to be left open-circuited, in all
insufficient for most practical applications where the loss@@0dels a “floating” node of a voltage generator would be
are frequency-dependent. To enable the analysis of |o§g§}amed. The problem can be bypassed by_mclgdmg aresistor
multiconductor transmission lines in the general case, oflb @ large resistance between each subcircuit terminal and
has to further modify the model of Fig. 3. One can mak@round. Second, if a transmission-line port is to be short-

a hybrid of the models of Figs. 2 and 3, taking advantagg'gcuited or terminated in an ind.uctor, for the 'models of
of both of them. In the model of Fig. 2, the author haglgs. 3 and 4, SPICE detects an illegal zero-resistance loop.

solved the problem of incorporating frequency variations of th-lt_eo av0|d.th|s problgm, a resmtorl of a _small r.eS|stance can be
luded in series with each terminal. Finally, in the subcircuits

modal attenuation coefficients and phase velocities by usi S
nerated for SPICE, the transmission-line ground can be

the Laplace transform. On the other hand, for a large num "y
P g made distinct from the common ground and the grounds at

of signal conductorsX), the scheme for the model of Fig. 3 L .
looks simpler than for the model of Fig. 2. (The model Oﬁhe two transmission-line ends can be mutually disconnected
allow modeling balanced lines.

Fig. 3 contains more controlled generators, but fewer resist(B?s
than the model of Fig. 2.)

The resulting model is shown in Fig. 4. It can be visualized
as the model of Fig. 3 where each simple transmission lineThree examples are presented in this section. The first exam-
is replaced by the model of Fig. 2 adapted far = 1. ple is aimed at demonstrating how to implement the proposed

. 5. Cross section of a symmetrical pair of microstrip lines. All dimen-
s are in millimeters.

V. EXAMPLES
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L
1.0 :mﬁ] f"A\ | o

0.5

0.5 i |
0 1 2 3 4 5 t[ns]

0-vG1) 0-v(G2) V-v(L1) A-v(L2)

Fig. 6. \oltages of the coupled microstrip lines of Fig. 5 (excited by a pulse generator): voltage at the driven terminal (G1), near-end cro3s-talk (G2
transmitted signal (L1), and far-end cross-talk (L2).

v[mV]
B0 1 .
400 |
66 &8 70 72 74 tms
0-W(G1)

Fig. 7. \oltage of the input to a semirigid open-ended coaxial line (excited by a pulse generatar): theory,m m m experiment.

multiconductor transmission-line models with SPICE. Thimcreased losses due to the surface roughness.) The conductor
remaining two examples are aimed at comparing computgfickness is 50um, the width of each signal conductor is
and measured data. 0.5 mm, and the separation between them is 0.5 mm. The

In the first example, consider the two symmetrical couplgghe |ength is 300 mm. One terminal of the line is driven

microstrip lines sketched in Fig. 5. The substrate is O'B_n?%ainst the ground by a pulse generator (of amplitude 2 V,

thick and its relative permittivity is 4.5. The loss tangent is o ) .
0.03 (atf,e; = 10 GHz) and it is assumed to linearly increas&€ro rise time, and 1-ns duration) and @0nternal resistance,

with frequency. The conductivity of conductors is assumedhile the three remaining terminals are connected to ground
to be o = 14 mS/m. (This value is four times lower thanin 502 resistors. The primary matrix parameters of the line
the conductivity of copper so that it approximately modelvere computed using the program of [13], for the reference
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frequenc = 10 GHz, and they are
qUeNCY frer y 8 =35, 196=0.02 8 3
[307.4 41.37nH 3 S s
[L] = 41 3 307 4 T ;\\\\\\\\\\\':\\\V:\\\\“—'\\\\‘m—;‘\“\-\\“-
L . -4 | m Qi e il L e 2 7 e d A i e 2 2772
[117.5 —5.8]pF 5,=4.65, tg6=0.03
=] 555 1175/ m
L : 4 Fig. 8. Cross section of a microstrip transmission line with five signal
R] = 93.50 9.69] Q2 conductors. All dimensions are in millimeters. (Reprinted from [6].)
| 969 93.50 | m
G] _[1926 -3.0|mS two SMA connectors mounted on the cable. One end of
| —3.0 1926 m the cable is connected to an HP 8510B network analyzer

the other end is left opened. The “pulse” response of
e cable was measured setting the low-pass frequency to

GHz. The resulting reflected pulse is shown in Fig. 7
gether with data computed using the model of Fig. 4. For

The two modes that can propagate along this line are the e
and odd modes. The modal matrices evaluated by the s
program (using the modal analysis in the frequency domai

are the SPICE model, the primary parameters of the line were
[Sy] = [0-7071 —0-7071} calculated using well-known closed-form formulas. The effects

0.7071  0.7071 of discontinuities at the transition from the coaxial cable to

12.63 —15.18 the two SMA connectors were taken into account by 1.5-nH

[S:]= {12.63 15.18} A inductors located 4 mm from the cable ends. In the theoretical

model, the electromotive force of the generator driving the

(The imaginary parts of these matrices are about two ordersygl, a5 taken as double the measured voltage reflected at
magnitude smaller and they are neglected.) The characteriglig ,hen test port of the network analyzer. With the final
impedance matrix of the line is time of 8 ns, the run time of PSpice was 30 s. A good
51.29 4.71 agreement between the theoretical and experimental results
[2:] = { 471 51_29} : can be observed.
- The final example is the printed-circuit board described
The phase velocities of the even and odd mode are evaluaﬂg%]_ The cross section of the board is shown in Fig. 8.
to becy, = 160.2 mm/s andey; = 174.6 mMV/s, respectively. The poard has five traces of overall length 288 mm. The
The parts of the modal attenuation coefficients due to thgme conductivity is taken as in the previous example and
conductor losses (obtained by excluding the dielectric l0Ssgy gielectric loss tangents (given in Fig. 8 at 10 GHz)
are ae; = 0.9214 Np/m anda. = 0.8997 Np/m, while the 56 assumed to vary linearly with frequency. The line is
parts due to the dielectric losses (obtained by subtracting {&,en by a 509 step generator at one end of the leftmost
conductor losses from the total losses) arg = 5.296 Np/m  gigna| conductor and the other ports are terminated in 50-
and ag; = 4._543_Np/m, respectively. 3ase_d on these dfita,@ resistors to ground. The experimental results similar to
SPICE subcircuit of the form shown in Fig. 4 can easily bgose shown in [6] were obtained using a Tektronix 7854
built, as given in the Appendix. _ sampling oscilloscope, an S52 pulse generator, and S4 and

The time-domain response was computed using the SPIGE sampling heads with a 50-ps step rise time [14]. For the
version of [1] with the subcircuit of Fig. 4, butidentical resultspicE model, the excitation waveform was taken by fitting
are obtained with the subcircuit of Fig. 2. The ceiling ofhe experimental data for the voltage at the driven port. The
the time step in the transient analysis was taken to be d@nerator end of the multiconductor line had a flared part,
ps (as in the remaining examples presented in this sectiohich was modeled by a section 10-mm long with separations
and the final time 6 ns. After running for 18 s on a PGeqyeen the signal conductors increased to 2 mm. The final
486/100 (including reading and checking the circuit), thgme for the transient analysis by PSpice was 5 ns, and the
program resulted in voltages at the line terminals as showgy, time 61 s. Fig. 9 shows the simulated and experimental
in Fig. 6. Although the losses and the related dispersiQpia for the voltages at selected ports. Again, a good agree-
are substantial, the computed response is causal. The plofiedht hetween the theoretical and experimental data can be
voltages are practically indistinguishable from results obtaingserved. The differences between these two sets of results are,
by applying the inverse FFT to the frequency-domain repcording to this experience, within the experimental errors
[Sgp]onse of the same line evaluated using the program {fqy repeatability of the measured waveforms.

The second example is a simple semirigid coaxial cable.
The diameter of the outer conductor is 2.985 mm and the
diameter of the inner conductor is 0.9195 mm. The dielectric Two novel SPICE-compatible models of multiconductor
relative permittivity is 2.1, and its loss tangent is assumdrhnsmission lines are presented (Figs. 2 and 4) in this pa-
to be 0.001 at 10 GHz and to vary linearly with frequencyper, built as subcircuits with controlled generators (some of
The conductivity of the conductors is taken to Be= 16 them in the domain of the Laplace transform) and resistors.
mS/m, based on measuring the cable attenuation as a functmth models can handle arbitrary lossy lines with frequency-
of frequency. The length of the cable is 718 mm, includindependent parameters, and can be used in SPICE to evaluate

VI. CONCLUSION
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v [mV]
| [.-
200 .
100
0 S :
0 1 2 3 4 t[ns]
- v(G1) ¢-v(L1)
@

v[mV]

0 r—-_i'{' - e N

w \

0 1 2 3 4 t [ns]
0-vG2) 0-v(L2) V-v(G3) A-v(L5)

(b)

Fig. 9. \oltages at the terminals of the transmission line of Fig. 8 (excited by a step generator). The signal conductors are ordered from 1 (the driven,
leftmost conductor) to 5 (the rightmost conductor). (a) Voltages at the generator (G1) and load end (L1) of the driven conductor and (b) voltages at
the generator (G2) and load end (L2) of the second conductor, at the generator end of the third (middle) conductor (G3), and at the load end of the
fifth conductor (L5): theory, = = = experiment.

o

the frequency-domain and time-domain responses. This ia-for the model shown in Fig. 4, specialized for two signal
cludes the impedance, admittance, and scattering parametersductors. This subcircuit was generated by the program of
for multiport networks, when it is required to suitably drlve[5]

and terminate the ports [8].

* SPICE PROGRAM NETLIST

*

APPENDIX .SUBCKT Line2
ExXAMPLE OF SPICE ®BCIRCUIT + GNDG GNDL

An example of a SPICE subcircuit is shown below whichk UZG1 UZL1 UZG2 UZL2
corresponds to the first example in Section V. The subcircdit PARAMS: LENGTH= 3.000E-01 WO0= 6.284E+10
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*

E_SG1 UGL1 UGX1l POLY(2 )

+ UDLG1 GNDG UDLG2 GNDG

+ 0.0

+ 7.071E-01 7.071E-01

E_SL1 ULl ULX1 POLY(2 )

+ UDLL1 GNDL UDLL2 GNDL

+ 0.0

+ 7.071E-01 7.071E-01

E_SG2 UG2 UGX2 POLY(2 )

+ UDLG1 GNDG UDLG2 GNDG

+ 0.0

+ -7.071E-01 7.071E-01

E_SL2 UL2 ULX2 POLY(2 )

+ UDLL1 GNDL UDLL2 GNDL

+ 0.0

+ -7.071E-01 7.071E-01

*

F_SG1 GNDG UDLG1 POLY(2 )

+ VF_G1 VF_G2

+ 0.0

+ 3.284E+01 -3.284E+01

F_SL1 GNDL UDLL1 POLY(2 )

+ VF L1 VF L2

+ 0.0

+ 3.284E+01 -3.284E+01

F_SG2 GNDG UDLG2 POLY(2 )

+ VF_G1 VF_G2

+ 0.0

+ 3.949E+01 3.949E+01

F_SL2 GNDL UDLL2 POLY(2 )

+ VF L1 VF L2

+ 0.0

+ 3.949E+01 3.949E+01

*

VF_G1 UGX1 GNDG 0V

VF_L1 ULX1 GNDL OV

VF_G2 UGX2 GNDG 0V

VF_L2 ULX2 GNDL OV

*

R _RL1 UDLG1 LL1 1

R _RL2 UDLG2 LL2 1

R_RR1 UDLL1 LR1 1

R_RR2 UDLL2 LR2 1

E_LAPL1 LL1 GNDG LAPLACE

+ {2*V(UDLL1 )-V(LR1 )-V(GNDL)}
+ {EXP(-LENGTH*SQRT((2* 8.997E-01*SQRT
+ (2*S/WO0)+S/ 1.746E+08)/(2* 4.543E+00
+ /(WO*WO/ 1.746E+08/ 1.746E+08)+
+ 1.746E+08/S)))}

E_LAPR1 LR1 GNDL LAPLACE

+ {2*V(UDLG1 )-V(LL1 )-V(GNDG)}
+ {EXP(-LENGTH*SQRT((2* 8.997E-01*SQRT
+ (2*S/WO0)+S/ 1.746E+08)/(2* 4.543E+00
+ /(WO*WO/ 1.746E+08/ 1.746E+08)+
+ 1.746E+08/S)))}

E_LAPL2 LL2 GNDG LAPLACE

+ {2*V(UDLL2 )-V(LR2 )-V(GNDL)}

+ {EXP(-LENGTH*SQRT((2* 9.214E-01*SQRT
+ (2*S/WO0)+S/ 1.602E+08)/(2* 5.296E+00

+ /(WO*WO/ 1.602E+08/ 1.602E+08)+

+ 1.602E+08/S)))}

E_LAPR2 LR2 GNDL LAPLACE

+ {2*V(UDLG2 )-V(LL2 )-V(GNDG)}

+ {EXP(-LENGTH*SQRT((2* 9.214E-01*SQRT
+ (2*S/WO0)+S/ 1.602E+08)/(2* 5.296E+00

+ /(WO*WO/ 1.602E+08/ 1.602E+08)+

+ 1.602E+08/S)))}

*

R_RSG1 UzG1 UG1l 1E-9
R_RPG1 UZG1 GNDG 1E+9
R_RSL1 UZL1 UL1 1E-9
R_RPL1 UZL1 GNDL 1E+9
R_RSG2 UzG2 UG2 1E-9
R_RPG2 UzZG2 GNDG 1E+9
R_RSL2 UzZL2 UL2 1E-9
R_RPL2 UZL2 GNDL 1E+9
*

.ENDS

The subcircuit has six external nodes: GNDG (ground for
the generator end of the line), GNDL (ground for the load end),
UZGL1 (signal conductor #1 at the generator end), UZL1 (signal
conductor #1 at the load end), UZG2 (signal conductor #2 at
the generator end), and UZL2 (signal conductor #2 at the load
end). Two parameters are defined: the line length (0.3 m) and
the reference angular frequenayy(= 27 fref = 6.284 - 109
s1). ESSG1, ESL1, ESG2, and ESL2 are the controlled
voltage generators in Fig. 4, at the far left and right sides. The
coefficients in their control functions are elements of the matrix
[Sy]. F-SG1, ESL1, FSG2, and ESL2 are the controlled
current generators in Fig. 4. The coefficients in their control
functions are elements of the matfi®;]~*, and the currents
correspond to the dummy voltage generators®F, VFL1,
VF_G2, and VEL2.

E_LAPL1, ELAPR1, ELAPL2, and ELAPR2 are the
controlled voltage generators in the Laplace-transform domain.
The exponential terms in their control functions correspond to
(19) and (20). Finally, 14 resistors are connected in series
and 1-@} resistors in parallel with the subcircuit external
nodes to satisfy SPICE requirements if the nodes are left
opened or shorted to ground.
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