
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 5, MAY 1997 569

SPICE-Compatible Models for Multiconductor
Transmission Lines in Laplace-Transform

Domain
Antonije R. Djordjević

Abstract—Two models for multiconductor transmission lines
are presented that are compatible with SPICE. One model is
based on a Th́evenin equivalent circuit and the other model
is based on mode decoupling. The models contain controlled
generators in the Laplace-transform domain and are able to
handle lossy lines with frequency-dependent parameters.

Index Terms—Multiconductor transmission lines.

I. INTRODUCTION

M OST DIGITAL circuits and some microwave circuits
contain multiconductor transmission lines (e.g., com-

puter buses, some directive couplers, and filters). In spite of
this, most popular computer-aided design (CAD) programs
still do not include arbitrary multiconductor lines as standard
elements. In particular, many digital-circuit designers and
microwave engineers use various versions of the program
known under the generic name SPICE. In recent releases
[1], this program has a built-in model only for a simple
transmission line. In subcircuit libraries, it has an obsolete
lumped-element model for a simple line and models for
2–5 coupled lines. The latter models are rather incomplete.
They assume the lines to have identical parameters, which is
questionable in both theory and practice. The models take into
account the coupling only between adjacent lines, which is
of a limited use. In all cases, the lines can be either lossless
or lossy. However, the primary parameters are independent of
frequency. This is insufficient for many applications, as the
losses are most often frequency-dependent.

There exists much literature which deals with the analy-
sis of the frequency-domain and time-domain responses of
multiconductor lines. However, very few of them [2]–[4]
describe theoretically well-founded SPICE-compatible models
for multiconductor transmission lines. A model for lossless
lines (with frequency-independent primary matrix parameters)
is presented in [2]. The model is a subcircuit prototype that
involves controlled generators and simple transmission lines.
Although this model works fine in many cases, there are
some computational problems, as explained in Section IV. The
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model described in [3] is an improvement of the previous
model. It works well for arbitrary lines and it has been
designed to be compatible with virtually any technique for the
electromagnetic-field analysis of multiconductor transmission
lines. However, this model is restricted to lossless lines. A
model that includes frequency-dependent losses and dispersion
is described in [4]. In this model, the dispersive modal prop-
agation is emulated by ladder networks of lumped elements,
which may result in huge circuits if long transmission lines
are analyzed.

None of these models can efficiently model multiconductor
transmission lines with frequency-dependent losses. This paper
is aimed at presenting two novel SPICE-compatible models
that can perform such a task. The first model, described
in Section II, is based on a Thévenin equivalent circuit. It
utilizes controlled generators in the Laplace-transform do-
main to model the modal delay, attenuation due to losses,
and dispersion. Particular care is taken to provide causal
responses in the time domain, as explained in Section III.
The second model, described in Section IV, is a hybrid
between the model of Section II and the model of [3].
Finally, several examples of the analysis using the proposed
models are presented in Section V, together with experimental
data.

Both models presented in this paper are subcircuit proto-
types that can easily be included into SPICE or other similar
programs [5].

Assume the multiconductor transmission lines to have a
total of ( ) signal conductors. The first conductors are
referred to as the signal conductors. The last conductor is the
reference conductor (although in practice it can be “floating”).
The line can guide TEM, quasi-TEM, or hybrid waves, but
it is assumed that the state on the line can be adequately
described by voltages and currents. Details on the analysis
of the transmission-line response are avoided, as they can be
found in [6]–[8].

II. THÉVENIN EQUIVALENT-CIRCUIT MODEL

Let the -axis be oriented along the length of the line, with
corresponding to end #1 of the line (“generator” end),

and ( ) to end #2 of the line (“load” end). The
transmission line is assumed to be terminated at each end in
a network, which is referred to as the terminal network. The
basic circuit-theory equations describing such a line in the
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Laplace-transform domain are the telegraphers’ equations

(1)

(2)

where is a vector of complex voltages between the
signal conductors and the reference conductor at position
along the line, is the corresponding vector of complex
currents of the signal conductors, , , , and are
the primary matrix parameters of the line, andis the complex
frequency ( on the imaginary axis, where is
the angular frequency, and is the frequency). The general
solution of the telegraphers’ equations can be obtained by
expanding the line state in terms of modes whose propagation
along the line is expressed by a multiplicative factor of the
form where is the modal propagation
coefficient ( ). The line voltages and currents can
be expressed in terms of the modes as

(3)

(4)

where the indices “inc” and “ref” correspond to the waves
traveling in the direction of the -axis and in the opposite
direction, respectively, and are vectors
of modal intensities, is the modal voltage matrix, and

the modal current matrix. The modal matrices and the
characteristic impedance matrix are related by

(5)

where ( ). The modal intensities at the two
line ends are related by

(6)

(7)

where . Now,

(8)

(9)

(10)

(11)

Equation (9) can be multiplied by and subtracted from
(8). Taking (5) into account, one obtains

(12)

which defines the Th́evenin equivalent circuit looking into
end #1 of the line (Fig. 1). The passive portion of this
circuit has the same impedance matrix as the characteristic
impedance matrix of the multiconductor transmission line. The
electromotive forces are related to the intensities of the modes
traveling in the direction of the negative-axis. The vector

represents the intensities of modes launched

Fig. 1. The Thévenin equivalent circuit for a multiconductor transmission
line.

from end #2 and propagated all the way to end #1. A similar
derivation can be carried out starting from (10) and (11) to
yield a relation between the voltage and current vectors for
end #2, which defines the Thévenin equivalent circuit looking
into this end (Fig. 1).

Considering this circuit, one is able design the first SPICE-
compatible model, shown in Fig. 2. For simplicity, the model
is shown for . Each passive network (with the
impedance matrix ) can be synthesized as a complete

-polygon with parallel branches to ground. The admittances
of the branches of this network can be expressed in terms
of the elements of the characteristic admittance matrix

. For a lossless and dispersionless line, this
network is purely resistive. For a lossy and dispersive line, the
admittances are complex and frequency-dependent. However,
in many practical cases, the influence of the line losses on
the characteristic admittance matrix and the modal patterns
is relatively small. To simplify the analysis, the elements of
the characteristic admittance matrix, as well as of the modal
voltage and current matrices, may be taken to be real and
frequency-independent.

The electromotive forces of the Th´evenin equivalent circuit
for each line end are emulated by-controlled voltage gen-
erators, located at the very left and right ends of the scheme
of Fig. 2. Each generator is controlled bymodal intensities.
According to (12), each multiplicative factor equals twice the
corresponding element of the modal voltage matrix.

The intensities of propagated modes are represented in the
circuit by electromotive forces of controlled voltage generators
in the Laplace-transform domain, located in the middle of the
circuit of Fig. 2. (To conform to SPICE circuit restrictions,
these generators must not be left open. They can be terminated
by arbitrary resistors, not shown in Fig. 2.) The propagation of
a mode is taken into account by the multiplicative exponential
factor of the form ( ) in the control function for a
generator, thus emulating (6) and (7). This factor multiplies the
intensity of the mode launched from the other transmission-
line end. The intensity of the launched mode is evaluated from
the voltages at the corresponding line end and the intensities
of modes incident on that end. For end #1, according to (8),
one has

(13)
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Fig. 2. A SPICE-compatable model based on the Th´evenin equivalent circuit forN = 3.

and a similar relation can be written for end #2. In the model
of Fig. 2, denotes the elements of the matrix .

For the frequency-domain analysis, the Laplace transform
is easily incorporated into the analysis. For the time-domain
analysis, however, SPICE must first evaluate the inverse
Laplace transform (i.e., the pulse response) for each exponen-
tial factor and then convolve it with the controlling voltages
at each time step.

III. CAUSALITY OF THE RESPONSE

In the evaluation of the time-domain response (in particular
for long lines) the frequency variations and the complex char-
acter of the modal propagation coefficients must be properly
taken into account. This can be achieved by fitting the results
of an electromagnetic analysis of the line, which includes the
line losses and dispersion. Thereby, special care should be
taken to obtain a causal response [9]. Considering the analogy
with a simple line, the author will present here some simple
equations for the modal propagation coefficients that satisfy
the causality requirements.

The real part of each modal propagation coefficient(
) can be approximately separated into two parts as

, where is due to the conductor losses and
is due to the dielectric losses. In practical cases, the matrix
has a negligible influence on and the matrix has

a negligible influence on . Hence, for a lossy line, two

modal analyses can be performed (for example, at a reference
frequency, ). First, take and evaluate for all
modes. Second, take and evaluate . However, the
attenuation coefficients and usually strongly depend
on frequency. The actual variations of the matrices and

are complicated and depend on the properties of the
conductor and dielectric materials involved in constructing
the line. For example, for normal conductors in the skin-
effect region and are approximately proportional
to the square root of frequency, and for superconductors,
to frequency squared. For poor dielectrics where the con-
ductive losses dominate, the matrix is independent of
frequency and is also constant. For good dielectrics at
microwave frequencies, the electron polarization dominates
and and are approximately proportional to frequency
squared (corresponding to a loss tangent that linearly increases
with frequency). However, except when both and are
independent of frequency, the resulting time-domain response
will not be causal unless appropriate frequency variations of
the modal phase coefficients or, equivalently, of the modal
phase velocities ( ), are taken into account.

Consider a simple transmission line. Its propagation coeffi-
cient is given in the Laplace-transform domain by

(14)
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where , , , and are the primary (scalar) parameters
of the line, which generally depend on. Equation (14) can
be rearranged as (15) as shown at the bottom of the following
page, where for , , , , and

and denote the corresponding factors in brackets.
In the simplest case of a lossless simple line (with

frequency-independent parameters)

(16)

where . Such a line can be approximated in the
circuit theory by a ladder network that consists of frequency-
independent inductors in series branches and capacitors in
parallel branches. Naturally, its response is causal, and (16)
presents the simplest cases of and that yield a
causal response.

If a lossy simple transmission line has frequency-
independent parameters (which in practice corresponds to
lower frequencies, where the skin effect is not pronounced),
then , , and are independent of frequency, so
that and are given by

(17)

and

(18)

Such a line also has a causal response. Following the approach
in [4], the line can be approximated by a ladder network
consisting of frequency-independent inductors and resistors
(connected in series) in series branches, and capacitors and
resistors (connected in parallel) in parallel branches.

If the skin effect is fully pronounced on a simple line,
then and

, where is the per-unit-length external inductance
(which is frequency-independent) and is the per-unit-length
internal inductance (which is inversely proportional to). In
this case, is practically proportional to the square root of
frequency, and the inductance has a small frequency-dependent
term. Hence,

(19)

is the third example of that gives a causal response.
Finally, one can consider a simple lossy line with a di-

electric loss tangent that is approximately a linear function of
frequency. If the line conductors are assumed to be lossless, the
line can be approximated by a ladder network of frequency-
independent inductors in series branches and capacitors and
resistors (connected in series) in parallel branches. Hence,

the equivalent capacitance per-unit length of this line slightly
varies with frequency, and the conductance is proportional to
frequency squared. The response of such a line is also causal,
thus having

(20)

A similar procedure can be done for superconductors ( ).
To obtain a causal response, one can combine any pair of

and from (16) to (20).
In order to secure a causal response for a multiconductor

transmission line, take (15) (at the bottom of the page) to
express each modal propagation coefficient in terms of

and that are related to the corresponding modal
attenuation coefficients and and the modal phase
velocity by (16)–(20). Thereby, the modal analysis is
performed only at the reference frequency, which can be
chosen arbitrarily, and (16)–(20) is selected based on the
assumed frequency variations of losses.

IV. M ODAL DECOMPOSITION MODEL

The derivation of the second SPICE-compatible model is
based on the model described in [3], which can be considered
as an improvement of the model of [2]. The model of [3] can be
derived starting from telegraphers’ equations in the frequency
domain (although a similar procedure can be performed in the
time domain). Substituting (3) and (4) into (1) and (2), yields

(21)

(22)

Equations (21) and (22) can be interpreted as telegraphers’
equations for a virtual multiconductor transmission line where
the element of the vector is the voltage of
the incident wave on conductor, and the element
of is the voltage of the reflected wave. However,
since the matrix is diagonal, the signal conductors of this
line are decoupled, and (21) and (22) can be written in scalar
form as

(23)

(24)

(15)
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Fig. 3. A SPICE-compatible model for lossless lines based on the modal decoupling forN = 3. (Reprinted from [3].)

A pair of the above equations (for the same) describes a
simple transmission line of characteristic impedance
(no units) and propagation coefficient can also
be interpreted as the current of the incident wave of the
conductor , and as the current of the reflected
wave. From (3) and (4), the actual voltages and currents at the
original multiconductor transmission-line terminals are related
to the voltages and currents of the virtual (decoupled) line by

(25)

(26)

(27)

(28)

Equations (25) and (27) can be emulated in SPICE by con-
trolled voltage generators, and (26) and (28) by controlled
current generators. For a lossless multiconductor transmission
line, a SPICE-compatible model can be designed [3] as shown
in Fig. 3 (for ). Each simple transmission line in
that model is lossless, its characteristic impedance is 1,
the length is , while the wave propagation velocity along
the line ( ) equals the corresponding modal phase velocity
and is assumed to be independent of frequency, which is the
only case that can be directly modeled by SPICE. Note that
in [3] a different definition of the characteristic impedances
is used, which is incompatible with (5). In Fig. 3,
denotes the elements of the matrix . All controlled
generators in Fig. 3 are ordinary (i.e., not in the Laplace-
transform domain). The control functions for the voltage
generators include voltages at the terminals of the simple
transmission lines and their inclusion into the SPICE model is
straightforward. However, the control functions for the current
generators include currents at the terminals of the subcircuit.
In order to sample these currents, dummy independent voltage
generators (of zero electromotive force) have to be added in
series with the controlled voltage generators (not shown in
Fig. 3). The currents of these dummy generators are used to
control the current generators.

At this point, some advantages of the model of [3] (Fig. 3)
over the model of [2] should be stressed, which are transferred
to the model that will be developed later in this section.
First, the model of Fig. 3 accepts an arbitrary modal voltage
matrix , while for the model of [2] this matrix must
be normalized so to satisfy the condition ( ) ,
where the superscript “” denotes transpose. This normaliza-
tion may be inconvenient for several reasons. First, when the
eigenvalue analysis of the line is performed many standard
computer programs for this purpose do not yield the required
normalization. A similar situation may occur if the modes
are evaluated directly from an electromagnetic-field analysis
(e.g., from a full-wave solution of the line). In both cases,
an additional computational effort is required to reduce the
matrix to the required form. Another problem for the
model of [2] occurs when the modes are degenerate (for a
lossless multiconductor transmission line in a homogeneous
dielectric), when the modal analysis can result in an arbitrary
(regular) matrix , and even more computational effort is
required to properly normalize this matrix. In this case, the
model of Fig. 3 can accept an arbitrary matrix , even the
simplest case of a unit matrix, and the corresponding matrix

is evaluated from (5).
Second, the characteristics of modes may not be evalu-

ated from the primary matrix parameters, but rather from an
electromagnetic-field analysis. The model of Fig. 3 requires
knowing only the modal propagation coefficients and the
two modal matrices ( and ), which is compatible
with many techniques for the electromagnetic-field analysis
of multiconductor lines, including the full-wave analysis. The
model of [2] requires knowing the primary matrix parameters
from which the modal propagation coefficients, the matrices

and , and the characteristic impedances of the de-
coupled simple transmission lines have to be calculated. In
cases when the primary matrix parameters are not evaluated
by the field analysis, the model of [2] requires an additional
effort to identify the characteristic impedances of the simple
transmission lines, which makes it harder to be applied.
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Fig. 4. A SPICE-compatible model for lossy lines based on the modal decoupling forN = 3.

Finally, it should be pointed out that there exist quite a few
papers, dating from old ones up to recent ones (e.g., [10],
[11]), where both the voltage- and current-wave equations are
formulated and solved independently for one multiconductor
transmission line. Such an analysis yields matrices and

that are unrelated to each other, and subsequent compu-
tations are required to introduce a normalization so to satisfy
(5). However, one must question the usefulness of solving
two eigenvalue problems (except in theoretical investigations).
The algorithm exposed in [6], which includes solving only
one eigenvalue equation, is all that is needed to obtain all
data for the present SPICE-compatible models without any
normalization of the modal matrices. For a comprehensive
treatment of this topic, see also [12].

The model of Fig. 3 was designed in [3] for the analysis of
lossless multiconductor transmission lines. In recent versions
of SPICE, there is a built-in model of simple lines with
frequency-independent primary parameters, , , and . In
conjunction with the model of Fig. 3, a lossy simple line can
model the modal propagation assuming the modal attenuation
coefficient to be independent of frequency. However, this is
insufficient for most practical applications where the losses
are frequency-dependent. To enable the analysis of lossy
multiconductor transmission lines in the general case, one
has to further modify the model of Fig. 3. One can make
a hybrid of the models of Figs. 2 and 3, taking advantages
of both of them. In the model of Fig. 2, the author has
solved the problem of incorporating frequency variations of the
modal attenuation coefficients and phase velocities by using
the Laplace transform. On the other hand, for a large number
of signal conductors ( ), the scheme for the model of Fig. 3
looks simpler than for the model of Fig. 2. (The model of
Fig. 3 contains more controlled generators, but fewer resistors
than the model of Fig. 2.)

The resulting model is shown in Fig. 4. It can be visualized
as the model of Fig. 3 where each simple transmission line
is replaced by the model of Fig. 2 adapted for .

Fig. 5. Cross section of a symmetrical pair of microstrip lines. All dimen-
sions are in millimeters.

This adaptation leaves two controlled voltage generators in
the Laplace-transform domain and two “ordinary” controlled
voltage generators. Each “ordinary” generator is controlled by
the output of one generator in the Laplace-transform domain.
Hence, each pair of controlled generators can be substituted by
a single controlled voltage generator in the Laplace-transform
domain, located in the middle of the scheme in Fig. 4. Each
network of resistors that models the passive part of the
Thévenin circuit in Fig. 2 reduces to a single resistor of
resistance , as shown in Fig. 4.

For the subcircuits of Figs. 2–4, augmentations may be
needed to satisfy some requirements imposed by SPICE. First,
if a transmission-line port is to be left open-circuited, in all
models a “floating” node of a voltage generator would be
obtained. The problem can be bypassed by including a resistor
of a large resistance between each subcircuit terminal and
ground. Second, if a transmission-line port is to be short-
circuited or terminated in an inductor, for the models of
Figs. 3 and 4, SPICE detects an illegal zero-resistance loop.
To avoid this problem, a resistor of a small resistance can be
included in series with each terminal. Finally, in the subcircuits
generated for SPICE, the transmission-line ground can be
made distinct from the common ground and the grounds at
the two transmission-line ends can be mutually disconnected
to allow modeling balanced lines.

V. EXAMPLES

Three examples are presented in this section. The first exam-
ple is aimed at demonstrating how to implement the proposed
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Fig. 6. Voltages of the coupled microstrip lines of Fig. 5 (excited by a pulse generator): voltage at the driven terminal (G1), near-end cross-talk (G2),
transmitted signal (L1), and far-end cross-talk (L2).

Fig. 7. Voltage of the input to a semirigid open-ended coaxial line (excited by a pulse generator): theory, experiment.

multiconductor transmission-line models with SPICE. The
remaining two examples are aimed at comparing computed
and measured data.

In the first example, consider the two symmetrical coupled
microstrip lines sketched in Fig. 5. The substrate is 0.3-mm
thick and its relative permittivity is 4.5. The loss tangent is
0.03 (at GHz) and it is assumed to linearly increase
with frequency. The conductivity of conductors is assumed
to be mS/m. (This value is four times lower than
the conductivity of copper so that it approximately models

increased losses due to the surface roughness.) The conductor
thickness is 50 m, the width of each signal conductor is
0.5 mm, and the separation between them is 0.5 mm. The
line length is 300 mm. One terminal of the line is driven
against the ground by a pulse generator (of amplitude 2 V,
zero rise time, and 1-ns duration) and 50-internal resistance,
while the three remaining terminals are connected to ground
in 50- resistors. The primary matrix parameters of the line
were computed using the program of [13], for the reference
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frequency GHz, and they are

nH
m
pF
m

m
mS
m

The two modes that can propagate along this line are the even
and odd modes. The modal matrices evaluated by the same
program (using the modal analysis in the frequency domain)
are

V

mA

(The imaginary parts of these matrices are about two orders of
magnitude smaller and they are neglected.) The characteristic
impedance matrix of the line is

The phase velocities of the even and odd mode are evaluated
to be mm/s and mm/s, respectively.
The parts of the modal attenuation coefficients due to the
conductor losses (obtained by excluding the dielectric losses)
are Np/m and Np/m, while the
parts due to the dielectric losses (obtained by subtracting the
conductor losses from the total losses) are Np/m
and Np/m, respectively. Based on these data, a
SPICE subcircuit of the form shown in Fig. 4 can easily be
built, as given in the Appendix.

The time-domain response was computed using the SPICE
version of [1] with the subcircuit of Fig. 4, but identical results
are obtained with the subcircuit of Fig. 2. The ceiling of
the time step in the transient analysis was taken to be 10
ps (as in the remaining examples presented in this section),
and the final time 6 ns. After running for 18 s on a PC
486/100 (including reading and checking the circuit), the
program resulted in voltages at the line terminals as shown
in Fig. 6. Although the losses and the related dispersion
are substantial, the computed response is causal. The plotted
voltages are practically indistinguishable from results obtained
by applying the inverse FFT to the frequency-domain re-
sponse of the same line evaluated using the program of
[8].

The second example is a simple semirigid coaxial cable.
The diameter of the outer conductor is 2.985 mm and the
diameter of the inner conductor is 0.9195 mm. The dielectric
relative permittivity is 2.1, and its loss tangent is assumed
to be 0.001 at 10 GHz and to vary linearly with frequency.
The conductivity of the conductors is taken to be
mS/m, based on measuring the cable attenuation as a function
of frequency. The length of the cable is 718 mm, including

Fig. 8. Cross section of a microstrip transmission line with five signal
conductors. All dimensions are in millimeters. (Reprinted from [6].)

two SMA connectors mounted on the cable. One end of
the cable is connected to an HP 8510B network analyzer
and the other end is left opened. The “pulse” response of
the cable was measured setting the low-pass frequency to
20 GHz. The resulting reflected pulse is shown in Fig. 7
together with data computed using the model of Fig. 4. For
the SPICE model, the primary parameters of the line were
calculated using well-known closed-form formulas. The effects
of discontinuities at the transition from the coaxial cable to
the two SMA connectors were taken into account by 1.5-nH
inductors located 4 mm from the cable ends. In the theoretical
model, the electromotive force of the generator driving the
line was taken as double the measured voltage reflected at
the open test port of the network analyzer. With the final
time of 8 ns, the run time of PSpice was 30 s. A good
agreement between the theoretical and experimental results
can be observed.

The final example is the printed-circuit board described
in [6]. The cross section of the board is shown in Fig. 8.
The board has five traces of overall length 288 mm. The
same conductivity is taken as in the previous example and
the dielectric loss tangents (given in Fig. 8 at 10 GHz)
are assumed to vary linearly with frequency. The line is
driven by a 50- step generator at one end of the leftmost
signal conductor and the other ports are terminated in 50-

resistors to ground. The experimental results similar to
those shown in [6] were obtained using a Tektronix 7854
sampling oscilloscope, an S52 pulse generator, and S4 and
S6 sampling heads with a 50-ps step rise time [14]. For the
SPICE model, the excitation waveform was taken by fitting
the experimental data for the voltage at the driven port. The
generator end of the multiconductor line had a flared part,
which was modeled by a section 10-mm long with separations
between the signal conductors increased to 2 mm. The final
time for the transient analysis by PSpice was 5 ns, and the
run time 61 s. Fig. 9 shows the simulated and experimental
data for the voltages at selected ports. Again, a good agree-
ment between the theoretical and experimental data can be
observed. The differences between these two sets of results are,
according to this experience, within the experimental errors
and repeatability of the measured waveforms.

VI. CONCLUSION

Two novel SPICE-compatible models of multiconductor
transmission lines are presented (Figs. 2 and 4) in this pa-
per, built as subcircuits with controlled generators (some of
them in the domain of the Laplace transform) and resistors.
Both models can handle arbitrary lossy lines with frequency-
dependent parameters, and can be used in SPICE to evaluate
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(a)

(b)

Fig. 9. Voltages at the terminals of the transmission line of Fig. 8 (excited by a step generator). The signal conductors are ordered from 1 (the driven,
leftmost conductor) to 5 (the rightmost conductor). (a) Voltages at the generator (G1) and load end (L1) of the driven conductor and (b) voltages at
the generator (G2) and load end (L2) of the second conductor, at the generator end of the third (middle) conductor (G3), and at the load end of the
fifth conductor (L5): theory, experiment.

the frequency-domain and time-domain responses. This in-
cludes the impedance, admittance, and scattering parameters
for multiport networks, when it is required to suitably drive
and terminate the ports [8].

APPENDIX

EXAMPLE OF SPICE SUBCIRCUIT

An example of a SPICE subcircuit is shown below which
corresponds to the first example in Section V. The subcircuit

is for the model shown in Fig. 4, specialized for two signal
conductors. This subcircuit was generated by the program of
[5].
*
* SPICE PROGRAM NETLIST
*
.SUBCKT Line2
+ GNDG GNDL
+ UZG1 UZL1 UZG2 UZL2
+ PARAMS: LENGTH= 3.000E-01 W0= 6.284E+10
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*
E_SG1 UG1 UGX1 POLY(2 )
+ UDLG1 GNDG UDLG2 GNDG
+ 0.0
+ 7.071E-01 7.071E-01
E_SL1 UL1 ULX1 POLY(2 )
+ UDLL1 GNDL UDLL2 GNDL
+ 0.0
+ 7.071E-01 7.071E-01
E_SG2 UG2 UGX2 POLY(2 )
+ UDLG1 GNDG UDLG2 GNDG
+ 0.0
+ -7.071E-01 7.071E-01
E_SL2 UL2 ULX2 POLY(2 )
+ UDLL1 GNDL UDLL2 GNDL
+ 0.0
+ -7.071E-01 7.071E-01
*
F_SG1 GNDG UDLG1 POLY(2 )
+ VF_G1 VF_G2
+ 0.0
+ 3.284E+01 -3.284E+01
F_SL1 GNDL UDLL1 POLY(2 )
+ VF_L1 VF_L2
+ 0.0
+ 3.284E+01 -3.284E+01
F_SG2 GNDG UDLG2 POLY(2 )
+ VF_G1 VF_G2
+ 0.0
+ 3.949E+01 3.949E+01
F_SL2 GNDL UDLL2 POLY(2 )
+ VF_L1 VF_L2
+ 0.0
+ 3.949E+01 3.949E+01
*
VF_G1 UGX1 GNDG 0V
VF_L1 ULX1 GNDL 0V
VF_G2 UGX2 GNDG 0V
VF_L2 ULX2 GNDL 0V
*
R_RL1 UDLG1 LL1 1
R_RL2 UDLG2 LL2 1
R_RR1 UDLL1 LR1 1
R_RR2 UDLL2 LR2 1
*
E_LAPL1 LL1 GNDG LAPLACE
+ {2*V(UDLL1 )-V(LR1 )-V(GNDL)}
+ {EXP(-LENGTH*SQRT((2* 8.997E-01*SQRT
+ (2*S/W0)+S/ 1.746E+08)/(2* 4.543E+00
+ /(W0*W0/ 1.746E+08/ 1.746E+08)+
+ 1.746E+08/S)))}
E_LAPR1 LR1 GNDL LAPLACE
+ {2*V(UDLG1 )-V(LL1 )-V(GNDG)}
+ {EXP(-LENGTH*SQRT((2* 8.997E-01*SQRT
+ (2*S/W0)+S/ 1.746E+08)/(2* 4.543E+00
+ /(W0*W0/ 1.746E+08/ 1.746E+08)+
+ 1.746E+08/S)))}
E_LAPL2 LL2 GNDG LAPLACE

+ {2*V(UDLL2 )-V(LR2 )-V(GNDL)}
+ {EXP(-LENGTH*SQRT((2* 9.214E-01*SQRT
+ (2*S/W0)+S/ 1.602E+08)/(2* 5.296E+00
+ /(W0*W0/ 1.602E+08/ 1.602E+08)+
+ 1.602E+08/S)))}
E_LAPR2 LR2 GNDL LAPLACE
+ {2*V(UDLG2 )-V(LL2 )-V(GNDG)}
+ {EXP(-LENGTH*SQRT((2* 9.214E-01*SQRT
+ (2*S/W0)+S/ 1.602E+08)/(2* 5.296E+00
+ /(W0*W0/ 1.602E+08/ 1.602E+08)+
+ 1.602E+08/S)))}
*
R_RSG1 UZG1 UG1 1E-9
R_RPG1 UZG1 GNDG 1E+9
R_RSL1 UZL1 UL1 1E-9
R_RPL1 UZL1 GNDL 1E+9
R_RSG2 UZG2 UG2 1E-9
R_RPG2 UZG2 GNDG 1E+9
R_RSL2 UZL2 UL2 1E-9
R_RPL2 UZL2 GNDL 1E+9
*
.ENDS

The subcircuit has six external nodes: GNDG (ground for
the generator end of the line), GNDL (ground for the load end),
UZG1 (signal conductor #1 at the generator end), UZL1 (signal
conductor #1 at the load end), UZG2 (signal conductor #2 at
the generator end), and UZL2 (signal conductor #2 at the load
end). Two parameters are defined: the line length (0.3 m) and
the reference angular frequency (
s ). E SG1, ESL1, E SG2, and ESL2 are the controlled
voltage generators in Fig. 4, at the far left and right sides. The
coefficients in their control functions are elements of the matrix

. F SG1, FSL1, F SG2, and FSL2 are the controlled
current generators in Fig. 4. The coefficients in their control
functions are elements of the matrix , and the currents
correspond to the dummy voltage generators VFG1, VF L1,
VF G2, and VFL2.

E LAPL1, E LAPR1, E LAPL2, and ELAPR2 are the
controlled voltage generators in the Laplace-transform domain.
The exponential terms in their control functions correspond to
(19) and (20). Finally, 1-n resistors are connected in series
and 1-G resistors in parallel with the subcircuit external
nodes to satisfy SPICE requirements if the nodes are left
opened or shorted to ground.
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[13] A. R. Djordjevíc, M. B. Bǎzdar, R. F. Harrington, and T. K. Sarkar,LIN-
PAR for Windows: Matrix Parameters for Multiconductor Transmission
Lines, Software and User’s Manual. Norwood, MA: Artech House,
1995.

[14] T. R. Arabi, M. Manela, T. K. Sarkar, and A. R. Djordjević, “The-
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